Optimización del cultivo de queratinocitos humanos para el desarrollo de un modelo de piel artificial humana: alternativas celulares como capa alimentadora
- Fernández González, Ana 1
- Lizana Moreno, Antonio Manuel 1
- De Pablos Ramos, María del Mar 1
- Ruíz García, Antonio 1
- Espinosa Ibáñez, Olga 1
- Fernández Porcel, Natividad 1
- Guerrero Calvo, Jorge 1
- Arrabal, Miguel 1
- López-Carmona, F. 1
- Arias-Santiago, Salvador 1
-
1
Universidad de Granada
info
ISSN: 0365-7965
Ano de publicación: 2016
Tomo: 101
Número: 798
Páxinas: 85-94
Tipo: Artigo
Outras publicacións en: Actualidad médica
Resumo
Purpose: This study aims to optimize keratinocyte culture to develop an artificial human skin model. For this purpose, human cells are used as feeder layer: human dermal fibroblasts and adipose derived mesenchymal stem cells. The results obtained are compared with 3T3 fibroblasts, murine feeder layer used for decades. Methods: We conducted an experimental study using human and murine sub-lethally irradiated cells as feeder layer for the establishment of keratinocyte culture. Cell expansion rate and doubling rate were evaluated in the keratinocyte cell passage and in the final cell recovery (was carried out at 3 weeks). The yield and viability of keratinocytes were also evaluated in the initial processing. Results: The results determine that irradiated human dermal fibroblasts and irradiated adipose derived mesenchymal stem cells can act as feeder layer promoting adhesion and expansion of keratinocytes. Human dermal fibroblasts provide comparable results to those obtained with murine 3T3 fibroblasts. Conclusions: Irradiated human dermal fibroblasts provide a functional feeder layer which allows effectively in vitro expansion of keratinocytes to be used for clinical purposes for the development of an artificial human skin model.
Referencias bibliográficas
- Amirlak B, Shahabi L. Skin Anatomy. Medscape. 2015. p. 1–8.
- Atiyeh BS, Costagliola M. Cultured epithelial autograft (CEA) in burn treatment: Three decades later. Burns. 2007. p. 405–13.
- Auxenfans C, Thepot A, Justin V, Hautefeuille A, Shahabeddin L, Damour O, et al. Characterisation of human fibroblasts as keratinocyte feeder layer using p63 isoforms status. Biomed Mater Eng. 2009;19(4-5):365–72.
- Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T. Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science. 1981;211(4486):1052–4.
- Bhat ZF, Bhat H, Pathak V. Principles of Tissue Engineering. Principles of Tissue Engineering. 2014. 1663-1683 p.
- Bisson F, Rochefort Eloise, Lavoie A, Larouche D, Zaniolo K, Simard-Bisson C, et al. Irradiated human dermal fibroblasts are as efficient as mouse fibroblasts as a feeder layer to improve human epidermal cell culture lifespan. Int J Mol Sci. 2013;14(3):4684–704.
- Black AF, Bouez C, Perrier E, Schlotmann K, Chapuis F, Damour O. Optimization and Characterization of an Engineered Human Skin Equivalent. Tissue Eng. 2005;11(5-6):723–33.
- Boulais N, Misery L. The epidermis: A sensory tissue. European Journal of Dermatology. 2008. p. 119–27.
- Bullock AJ, Higham MC, MacNeil S. Use of human fibroblasts in the development of a xenobiotic-free culture and delivery system for human keratinocytes. Tissue Eng. 2006;12(2):245– 55.
- Cheng L, Hammond H, Ye Z, Zhan X, Dravid G. Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem Cells. 2003;21(2):131– 42.
- Coolen NA, Verkerk M, Reijnen L, Vlig M, Van Den Bogaerdt AJ, Breetveld M, et al. Culture of keratinocytes for transplantation without the need of feeder layer cells. Cell Transplant. 2007;16(6):649–61.
- De Corte P, Verween G, Verbeken G, Rose T, Jennes S, De Coninck A, et al. Feeder layerand animal product-free culture of neonatal foreskin keratinocytes: Improved performance, usability, quality and safety. Cell Tissue Bank. 2012;13(1):175– 89.
- Hernon CA, Harrison CA, Thornton DJA, MacNeil S. Enhancement of keratinocyte performance in the production of tissue-engineered skin using a low-calcium medium. Wound Repair Regen. 2007;15(5):718–26.
- Kanitakis J. Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol. 2002;12(4):390–9; quiz 400–1.
- Lamb R, Ambler CA. Keratinocytes Propagated in SerumFree, Feeder-Free Culture Conditions Fail to Form Stratified Epidermis in a Reconstituted Skin Model. PLoS One. 2013;8(1).
- Lamme EN, Van Leeuwen RTJ, Brandsma K, Van Marie J, Middelkoop E. Higher numbers of autologous fibroblasts in an artificial dermal substitute improve tissue regeneration and modulate scar tissue formation. J Pathol. 2000;190(5):595– 603.
- Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.
- Larouche D, Paquet C, Fradette J, Carrier P, Auger FA, Germain L. Regeneration of skin and cornea by tissue engineering. Methods Mol Biol. 2009;482:233–56.
- MacNeil S. Progress and opportunities for tissue-engineered skin. Nature. 2007;445(7130):874–80.
- McGrath JA, Eady RAJ, Pope FM. Anatomy and Organization of Human Skin. Rook’s Textb Dermatology. 2004;45–128.
- McLafferty E, Hendry C, Farley A. The integumentary system: anatomy, physiology and function of skin. Nurs Stand. 2012;27(3):35–42.
- Mujaj S, Manton K, Upton Z, Richards S. Serum-free primary human fibroblast and keratinocyte coculture. Tissue Eng Part A. 2010;16(4):1407–20.
- Panacchia L, Dellambra E, Bondanza S, Paterna P, Maurelli R, Paionni E, et al. Nonirradiated human fibroblasts and irradiated 3t3-j2 murine fibroblasts as a feeder layer for keratinocyte growth and differentiation in vitro on a fibrin substrate. Cells Tissues Organs. 2009;191(1):21–35.
- Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975;6(3):331–43.
- Sharma SM, Fuchsluger T, Ahmad S, Katikireddy KR, Armant M, Dana R, et al. Comparative Analysis of Human-Derived Feeder Layers with 3T3 Fibroblasts for the Ex Vivo Expansion of Human Limbal and Oral Epithelium. Stem Cell Rev Reports. 2012;8(3):696–705.
- Stacey GN, Cobo F, Nieto A, Talavera P, Healy L, Concha Angel. The development of “feeder” cells for the preparation of clinical grade hES cell lines: Challenges and solutions. J Biotechnol. 2006;125(4):583–8.
- Sun T, Higham M, Layton C, Haycock J, Short R, MacNeil S. Developments in xenobiotic-free culture of human keratinocytes for clinical use. Wound Repair Regen. 2004;12(6):626–34.
- Supp DM, Boyce ST. Engineered skin substitutes: Practices and potentials. Clin Dermatol. 2005;23(4):403–12.