Estudio piloto de tolerabilidad cutánea de láminas de fibrina-agarosa en voluntarios sanos

  1. Fernández González, Ana
  2. Lizana Moreno, Antonio Manuel
  3. Fernández Porcel, Natividad
  4. Guerrero Calvo, Jorge
  5. Ruiz García, Antonio
  6. Espinosa Ibáñez, Olga
  7. Sierra Sánchez, Álvaro
  8. Ordóñez Luque, Alexandra
  9. Arias Santiago, Salvador
Revista:
Actualidad médica

ISSN: 0365-7965

Ano de publicación: 2016

Tomo: 101

Número: 799

Páxinas: 171-175

Tipo: Artigo

DOI: 10.15568/AM.2016.799.OR04 DIALNET GOOGLE SCHOLAR lock_openDIGIBUG editor

Outras publicacións en: Actualidad médica

Obxectivos de Desenvolvemento Sustentable

Resumo

Objetivos: En el presente estudio se persigue comprobar posibles reacciones adversas, derivadas del uso tópico de láminas de fibrina-agarosa en el antebrazo de voluntarios sanos. Metodología: Se llevó a cabo un estudio experimental en siete voluntarios sanos, cinco varones y dos mujeres, que no presentaban ningún tipo de lesión cutánea visible. En el antebrazo de cada voluntario se colocaron dos láminas de fibrina-agarosa de 4 cm2 . Cada lámina se cubrió con un apósito impregnado y sobre una de las láminas se aplicó pomada antibiótica con mupirocina. Ambas láminas se cubrieron finalmente con un apósito protector y se mantuvieron en contacto directo sobre la piel durante 48 horas. Resultados: Los resultados determinaron que no se detectaron reacciones adversas después de 48 horas de evolución ni en los siguientes 7 días en ningún voluntario. Se observaron diferencias entre las dos láminas implantadas en cada voluntario, ya que al retirar el apósito cubierto con pomada antibiótica, la lámina presentaba un aspecto más hidratado que la que no llevaba pomada antibiótica. Conclusiones: El uso tópico de las láminas de fibrina-agarosa en voluntarios sanos no presenta reacciones adversas del tipo irritación o alergia al aplicarse directamente por vía tópica. Aunque el tamaño muestral del estudio es limitado, sugiere que la combinación de fibrina-agarosa se presenta como el biomaterial idóneo para el desarrollo de un modelo de piel artificial humana.

Referencias bibliográficas

  • Ahmed TAE, Dare E V, Hincke M. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev. 2008;14(2):199–215.
  • Alaminos M, Sánchez-Quevedo MDC, Muñoz-Ávila JI, Serrano D, Medialdea S, Carreras I, et al. Construction of a complete rabbit cornea substitute using a fibrin-agarose scaffold. Investig Ophthalmol Vis Sci. 2006;47(8):3311–7.
  • Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T. Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science. 1981;211(4486):1052–4.
  • Bhat ZF, Bhat H, Pathak V. Principles of Tissue Engineering. Principles of Tissue Engineering. 2014. 1663-1683 p.
  • Biradar S, Goornavar V, Periyakaruppan A, Koehne J, Hall JC, Ramesh V. Agarose gel tailored calcium carbonate nanoparticles-synthesis and biocompatibility evaluation. J Nanosci Nanotechnol. 2014;14(6):4257–63.
  • Black AF, Bouez C, Perrier E, Schlotmann K, Chapuis F, Damour O. Optimization and Characterization of an Engineered Human Skin Equivalent. Tissue Eng. 2005;11(5- 6):723–33.
  • Burnouf T, Goubran HA, Chen T-M, Ou K-L, El-Ekiaby M, Radosevic M. Blood-derived biomaterials and platelet growth factors in regenerative medicine. Blood Rev. 2013 Mar;27(2):77–89.
  • Burnouf T, Su C-Y, Radosevich M, Goubran H, El-Ekiaby M. Blood-derived biomaterials: fibrin sealant, platelet gel and platelet fibrin glue. Isbt Sci Ser Vol 4, No 1, State Art Present. 2009;4:136–42.
  • Carriel V, Garzón I, Jiménez JM, Oliveira ACX, Arias-Santiago S, Campos A, et al. Epithelial and stromal developmental patterns in a novel substitute of the human skin generated with fibrin-agarose biomaterials. Cells Tissues Organs. 2012;196(1):1–12.
  • Cen L, Liu W, Cui L, Zhang W, Cao Y. Collagen tissue engineering: Development of novel biomaterials and applications. Pediatric Research. 2008. p. 492–6.
  • Chevallay B, Herbage D. Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy. Med Biol Eng Comput. 2000;38(2):211–8.
  • De J, Cardona C, Ionescu AM, Go R, Gonza M, Campos A, et al. Transparency in a fibrin and fibrin-agarose corneal stroma substitute generated by tissue engineering. Cornea. 2011;30(12):1428–35.
  • Garzón I, Martín-Piedra MA, Alfonso-Rodríguez C, González-Andrades M, Carriel V, Martínez-Gómez C, et al. Generation of a biomimetic human artificial cornea model using wharton’s jelly mesenchymal stem cells. Investig Ophthalmol Vis Sci. 2014;55(7):4073–83.
  • Garzón I, Sánchez-Quevedo MC, Moreu G, GonzálezJaranay M, González-Andrades M, Montalvo A, et al. In vitro and in vivo cytokeratin patterns of expression in bioengineered human periodontal mucosa. J Periodontal Res. 2009;44(5):588–97.
  • Garzon I, Serrato D, Roda O, Del Carmen Sánchez-Quevedo M, González-Jaranay M, Moreu G, et al. In vitro cytokeratin expression profiling of human oral mucosa substitutes developed by tissue engineering. Int J Artif Organs. 2009;32(10):711–9.
  • Glowacki J, Mizuno S. Collagen scaffolds for tissue engineering. Biopolymers. 2008;89(5):338–44.
  • Grassl ED, Oegema TR, Tranquillo RT. Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent. J Biomed Mater Res. 2002;60(4):607–12.
  • Ionescu AM, Alaminos M, Cardona J de la C, García-López Durán J de D, González-Andrades M, Ghinea R, et al. Investigating a novel nanostructured fibrin-agarose biomaterial for human cornea tissue engineering: Rheological properties. J Mech Behav Biomed Mater. 2011;4(8):1963–73.
  • Ionescu AM, Cardona JC, Garzón I, Oliveira AC, Ghinea R, Alaminos M, et al. Integrating-sphere measurements for determining optical properties of tissue-engineered oral mucosa. J Eur Opt Soc. 2015;10.
  • Jockenhoevel S, Zund G, Hoerstrup SP, Chalabi K, Sachweh JS, Demircan L, et al. Fibrin gel advantages of a new scaffold in cardiovascular tissue engineering. Eur J Cardiothoracic Surg. 2001;19(4):424–30.
  • Lamme EN, Van Leeuwen RTJ, Brandsma K, Van Marie J, Middelkoop E. Higher numbers of autologous fibroblasts in an artificial dermal substitute improve tissue regeneration and modulate scar tissue formation. J Pathol. 2000;190(5):595–603.
  • Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.
  • Larouche D, Paquet C, Fradette J, Carrier P, Auger FA, Germain L. Regeneration of skin and cornea by tissue engineering. Methods Mol Biol. 2009;482:233–56.
  • Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm. 2001;221(1-2):1–22.
  • Li Y, Meng H, Liu Y, Lee BP. Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. Scientific World Journal. 2015.
  • MacNeil S. Progress and opportunities for tissueengineered skin. Nature. 2007;445(7130):874–80.
  • Miyata S, Tateishi T, Ushida T. Influence of cartilaginous matrix accumulation on viscoelastic response of chondrocyte/agarose constructs under dynamic compressive and shear loading. J Biomech Eng. 2008;130(5):051016.
  • Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials (Basel). 2010;3(3):1863–87.
  • Rodríguez IA, López-López MT, Oliveira ACX, SánchezQuevedo MC, Campos A, Alaminos M, et al. Rheological characterization of human fibrin and fibrin-agarose oral mucosa substitutes generated by tissue engineering. J Tissue Eng Regen Med. 2012;6(8):636–44.
  • Sanchez-Quevedo MC, Alaminos M, Capitan LM, Moreu G, Garzon I, Crespo P V., et al. Histological and histochemical evaluation of human oral mucosa constructs developed by tissue engineering. Histol Histopathol. 2007;22(4-6):631– 40.
  • Scarano A, Carinci F, Piattelli A. Lip augmentation with a new filler (agarose gel): a 3-year follow-up study. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology. 2009.
  • Selmi T a S, Verdonk P, Chambat P, Dubrana F, Potel J-F, Barnouin L, et al. Autologous chondrocyte implantation in a novel alginate-agarose hydrogel: outcome at two years. J Bone Joint Surg Br . 2008;90(5):597–604.
  • Shakya AK, Holmdahl R, Nandakumar KS, Kumar A. Polymeric cryogels are biocompatible, and their biodegradation is independent of oxidative radicals. J Biomed Mater Res Part A. 2014;102(10):3409–18.
  • Supp DM, Boyce ST. Engineered skin substitutes: Practices and potentials. Clin Dermatol. 2005;23(4):403–12.