Deep Learning Techniques for Automated Analysis and Processing of High Resolution Medical Imaging

  1. Suárez Hervella, Álvaro
Dirixida por:
  1. Jorge Novo Buján Co-director
  2. José Rouco Maseda Co-director

Universidade de defensa: Universidade da Coruña

Fecha de defensa: 07 de febreiro de 2022

Tribunal:
  1. C. I. Sánchez Gutiérrez Presidente/a
  2. Laura M. Castro Secretario/a
  3. José Luis Alba Castro Vogal

Tipo: Tese

Teseo: 706875 DIALNET lock_openRUC editor

Resumo

Las técnicas de imagen tienen un papel destacado en la práctica clínica moderna de numerosas especialidades médicas. Por ejemplo, en oftalmología es común el uso de diferentes técnicas de imagen para visualizar y estudiar el fondo de ojo. En este contexto, los métodos automáticos de análisis de imagen son clave para facilitar el diagnóstico precoz y el tratamiento adecuado de diversas enfermedades. En la actualidad, los algoritmos de aprendizaje profundo ya han demostrado un notable rendimiento en diferentes tareas de análisis de imagen. Sin embargo, estos métodos suelen necesitar grandes cantidades de datos etiquetados para el entrenamiento de las redes neuronales profundas. Esto complica la adopción de los métodos de aprendizaje profundo, especialmente en áreas donde los conjuntos masivos de datos etiquetados son más difíciles de obtener, como es el caso de la imagen médica. Esta tesis tiene como objetivo explorar nuevos métodos para el análisis automático de imagen médica, concretamente en oftalmología. En este sentido, el foco principal es el desarrollo de nuevos métodos basados en aprendizaje profundo que no requieran grandes cantidades de datos etiquetados para el entrenamiento y puedan aplicarse a imágenes de alta resolución. Para ello, hemos presentado un nuevo paradigma que permite aprovechar modalidades de imagen complementarias no etiquetadas para el entrenamiento de redes neuronales profundas. Además, también hemos desarrollado nuevos métodos para el análisis en detalle de las imágenes del fondo de ojo. En este sentido, esta tesis explora el análisis de estructuras retinianas relevantes, así como el diagnóstico de diferentes enfermedades de la retina. En general, los algoritmos desarrollados proporcionan resultados satisfactorios para el análisis de las imágenes de fondo de ojo, incluso cuando la disponibilidad de datos de entrenamiento etiquetados es limitada.