Turismo y Cambio Climático: Aplicación del Holiday Climate Index (HCI:Urban) en España en los meses de verano para mediados y finales de siglo

  1. Díaz-Poso, Alejandro 1
  2. Royé, Dominic 2
  3. Martínez Ibarra, Emilio 3
  1. 1 Universidad Santiago de Compostela
  2. 2 Climate Research Foundation (FIC), España
  3. 3 Universidad de Granada, España
Revista:
Investigaciones Turísticas

ISSN: 2174-5609

Año de publicación: 2023

Número: 26

Páginas: 274-296

Tipo: Artículo

DOI: 10.14198/INTURI.23493 DIALNET GOOGLE SCHOLAR lock_openRUA editor

Otras publicaciones en: Investigaciones Turísticas

Objetivos de desarrollo sostenible

Resumen

Over the last few decades, tourism has become increasingly important in the Spanish economy. With 83.5 million tourists in 2019, 11.7% of the national GDP comes from the tourism sector. Climate is one of the main aspects taken into consideration by people when choosing a tourist destination. The Holiday Climate Index (HCI) is a bioclimatic indicator that takes into account different climate variables (temperature, precipitation, humidity, wind and cloudiness), in order to determine whether the climatic conditions are suitable for urban tourist activities. Using HCI:Urban, the evolution of climatic comfort levels for the Peninsula and Balearic Islands (PB) in summer (June, July and August) has been analysed for the mid (2041-2060) and end of the century (2081-2100) under the RCP 4.5 and 8.5 climate scenarios. Taking as a reference the period 1986-2005, the results indicate a considerable increase in climatic comfort especially at the end of the century in the northern and north-western regions of the country, where the values reach the "excellent" rating (HCI 80-90). At the same time, the progressive loss of comfort as a result of climate change in southern regions such as Extremadura, Murcia, Andalusia and the Balearic Islands will lead to changes in the spatial-temporal distribution of tourist flows. Although its formulation can be improved, the data provided by the HCI:Urban can be useful in the development of urban planning instruments, facilitating decision-making by authorities within a new tourism context.

Referencias bibliográficas

  • Amelung, B., y Viner, D. (2006). Mediterranean tourism: Exploring the future with the tourism climate index. J Sustain Tour, 14, 349–366 https://doi.org/10.2167/jost549.0
  • Amelung, B., Nicholls, S., y Viner, D. (2007). Implications of global climate change for tourism flows and seasonality. J. Travel Res, 45, 285–296. https://doi.org/10.1177/0047287506295937
  • Amelung, B., y Moreno, A. (2009). Impacts of climate change in tourism in Europe. PESETATourism study. Joint Research Centre/ Institute for Prospective Technological studies (European Commission).
  • Barry, R. G. (2008). Mountain Weather and Climate (3rd ed). Cambridge University Press. https://doi.org/10.1017/CBO9780511754753
  • Brosy, C., Zaninovic, K., y Matzarakis, A. (2014). Quantification of climate tourism potential of Croatia based on measured data and regional modeling. Int J Biometeorol, 58, 1369– 1381. https://doi.org/10.1007/s00484-013-0738-8
  • Brunet, M., Jones, P.D., Sigró, J., Saladié, O., Aguilar, E., Moberg, A., Della-Marta, P.M., Lister, D., Walther, A., y López, D., (2007). Temporal and spatial temperature variability and change over Spain during 1850-2005. J Geophys Res Atmos, 112, D12117. https://doi.org/10.1029/2006JD008249
  • Buguet, A. (2007). Sleep under extreme environments: Effects of heat and cold exposure, altitude, hyperbaric pressure and microgravity in space», J Neurol Sci, 262, 145-152 https://doi.org/10.1016/j.jns.2007.06.040
  • Carrillo, J., González, A., Pérez, J.C., Expósito, F.J., y Díaz, J.P. (2022). Projected impacts of climate change on tourism in the Canary Islands. Reg Environ Change, 22, 61. https://doi.org/10.1007/s10113-022-01880-9
  • Clark, R.P., y Edholm, O.G. (1985) Man and his thermal environment. E. Arnold, London
  • Copernicus Climate Change Service. (2019). https://doi.org/10.24381/cds.126d9ce7
  • Crouch, G.I. (1995). A meta-analysis of tourism demand. Ann Tour Res, 22, 103-118. https://doi.org/10.1016/0160-7383(94)00054-V
  • De Freitas, C.R. (2003) Tourism climatology: evaluating environmental information for decision making and business planning in the recreation and tourism sector. Int J Biometeorol, 48, 45–54. https://doi.org/10.1007/s00484-003-0177-z
  • De Freitas, C.R., Scott, D., y McBoyle G. (2008). A second generation climate index for tourism (CIT): specification and verification. Int J Biometeorol, 52(5),399-407. https://doi.org/10.1007/s00484-007-0134-3
  • Demiroglu, O., Saygili-Araci, F., Pacal, A., Hall, C., y Kurnaz, M. (2020). Future Holiday Climate Index (HCI) Performance of Urban and Beach Destinations in the Mediterranean. Atmosphere, 11, 911 https://doi.org/10.3390/atmos11090911
  • Díaz-Poso, A.; Lorenzo, N.; Royé, D. (2023). Spatio-temporal evolution of heat waves severity and expansion across the Iberian Peninsula and Balearic Islands. Environ. Res. 217, 114864. https://doi.org/10.1016/j.envres.2022.114864
  • Donat, M.G., Alexander, L.V., Yang, H., Durre, I., Vose, R., Dunn, R.J.H., Willet, K.M., Aguilar, E., Brunet, M., Caesar, J., Hewiston, B., Jack, C., Klein Tank, A.M.G., Kruger, A.C., Marengo, J., Peterson, T.C., Renom, M., Oria Rojas, C., Rusticucci, M., Salinger, J., Elrayah, A.S., Sekele, S.S., Srivastava, A.K., Trewin, B., Villaroel, C., Vincent, L.A., Zhai, P., Zhang, X., y Kitching, S. (2013): Updated analyses of temperature and precipitation extreme indices since the beginin of the twentieth century. J Geophys Res Atmos, 118, 2098-2118. https://doi.org/10.1002/jgrd.50150
  • Fanger, P.O. (1972) Thermal comfort. McGraw-Hill, New York
  • Gagge, A.P., Fobelets, A.P., y Berglund, L.G. (1986) A standard predictive index of human response to the thermal environment. ASHRAE Trans, 92, 709–731
  • Gasparrini, A., Guo, Y., Sera, F., Vicedo-Cabrera, A.M., Huber, V., Tong, S., y Armstrong, B., (2017). Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet. Health, 1, e360–e367. https://doi.org/10.1016/S2542- 5196(17)30156-0
  • Gössling, S., Bruno, A., y Steiger, R. (2016). “It Was Raining All the Time!”: Ex Post Tourist Weather Perceptions. Atmosphere, 7(1), 1-12. https://doi.org/10.3390/atmos7010010
  • Grize, L., Huss, A., Thommen, O., Schindler, C., y Braun-Fahrländer C. (2005). Heat wave 2003 and mortality in Switzerland. Swiss Med Wkly, 135, 200-205.
  • Haskella, E.H., Palcaa, J.W., Walkera, J.M., Bergera, R.J. y Hellera, H.C. (1981). The effects of high and low ambient temperatures on human sleep stages. Electroencephalogr Clin Neurophysiol, 51, 494-501 https://doi.org/10.1016/0013-4694(81)90226-1
  • Hein, L., Metzger, M.J., y Moreno, A. (2009). Potential impacts of climate change on tourism: A case study for Spain. Curr Opin Environ Sustain, 1, 170–178. https://doi.org/10.1016/j.cosust.2009.10.011
  • Hejazizadeh, Z., Karbalaee, A., Hosseini, S.A., Tabatabaei, S.A. (2019). Comparison of the holiday climate index (HCI) and the tourism climate index (TCI) in desert regions and Makran coasts of Iran. Arab J Geosci, 12, 803. https://doi.org/10.1007/s12517-019- 4997-5
  • Höppe, P. (1999). The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol, 43, 71– 75. https://doi.org/10.1007/s004840050118
  • Ibarra, E.M. (2011). The use of webcam images to determine tourist–climate aptitude: favourable weather types for sun and beach tourism on the Alicante coast (Spain). Int J Biometeorol, 55, 373–385 https://doi.org/10.1007/s00484-010-0347-8
  • Instituto Nacional de Estadística (INE). (2022). Movimientos Turísticos en Fronteras, https://www.ine.es/jaxiT3/Tabla.htm?t=23981&L=0 , (acceso 25 de mayo de 2022).
  • IPCC, (2018). Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. World Meteorological Organization, Geneva, Switzerland, 32 pp.
  • Kuglitsch, F.G., Toreti, A., Xoplaki, E., Della-Marta, P.M., Zerefos, C.S., Türkes¸, M., y Luterbacher, J., (2010). Heat wave changes in the eastern Mediterranean since 1960. Geophys Res Lett, 37(4), L04802. https://doi.org/10.1029/2009GL041841
  • Lohmann, M. y Kaim, E. (1999). Weather and holiday destination preferences image, attitude and experience. Tour Rev, 54, 54-64. https://doi.org/10.1108/eb058303
  • López, A., Fernández, F., Arroy, F., Martín-Vide, J. y Cuadrat, J.M. (1993). El clima de las ciudades españolas. Cátedra. Madrid, 268 pp
  • Lorenzo, N., Díaz-Poso, A., Royé, D., (2021). Heatwave intensity of the Iberian Peninsula: Future climate projections. Atmos Res, 258, 105655. https://doi.org/10.1016/j.atmosres.2021.105655
  • Matzarakis, A., Mayer, H. y Iziomon, M. (1999). Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol, 43, 76–84. https://doi.org/10.1007/s004840050119
  • Matzarakis, A. (2006). Weatherand climate-related information for tourism. Tour Hosp Plan Dev, 3(2), 99–115. https://doi.org/10.1080/14790530600938279
  • Matzarakis, A., Rutz, F., y Mayer, H. (2007). Modeling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol, 51(4), 323–334. https://doi.org/10.1007/s00484-006-0061-8
  • Matzarakis, A. (2010). Climate change and temporal at regional and local scale. In: Schott, C. (Ed.) Tourism and the implications of climate change: issues and actions (pp. 237–259). Bridg Tour Theory Pract, 3. Emerald Group Publishing Limited, Bingley. https://doi.org/10.1108/S2042-1443(2010)0000003017
  • Mayer, H., y Höppe, P. (1987). Thermal comfort of man in different urban environments. Theor Appl Climatol, 38, 43–49. https://doi.org/10.1007/BF00866252
  • Mieczkowski, Z. (1985). The Tourism Climate Index: a method of evaluating world climates for tourism. Can Geogr / Geogr Can, 29(3), 220-233 https://doi.org/10.1111/j.1541- 0064.1985.tb00365.x
  • Millán López, A. (2023). Climatología del Turismo Aplicada ante la dinámica de complementariedad litoral-interior: la provincia de Granada como base de estudio. Cuadernos Geográficos, 62(1), 150-170. https://doi.org/10.30827/cuadgeo.v62i1.24076
  • Miró Pérez, J. J. y Olcina Cantos, J. (2020). Cambio climático y confort térmico. Efectos en el turismo de la Comunidad Valenciana. Investigaciones Turísticas (20), pp. 1-30. https://doi.org/10.14198/INTURI2020.20.01
  • Molina, M.O., Sánchez, E., y Gutiérrez, C., (2020). Future heat waves over the Mediterranean from an Euro-CORDEX regional climate model ensemble. Sci Rep, 10, 8801. https://doi.org/10.1038/s41598-020-65663-0
  • Moreno García, M.C. (1999). Climatología urbana. Edicions Universitat de Barcelona. 71 pp.
  • Moreno, A. (2010). Mediterranean Tourism and Climate (Change): A Survey-Based Study. Tour Hosp Plan Dev, 7, 253–265. https://doi.org/10.1080/1479053X.2010.502384
  • Nairn, J., y Fawcett, R., (2015). The excess heat factor: A metric for heatwave intensity and its use in classifying heatwave severity. Int J Environ Res Public Health, 12, 227-253. https://doi.org/10.3390/ijerph120100227
  • Nicholls, S., y Amelung, B. (2008). Climate Change and Tourism in Northwestern Europe: Impacts and Adaptation. Tour Anal, 13, 21–31. https://doi.org/10.3727/108354208784548724
  • Okamoto-Mizuno, K. y Mizuno, K. (2012): Effects of thermal environment on sleep and circadian rhythm. J Physiol Anthropol, 31, 1-14. https://doi.org/10.1186/1880-6805- 31-14
  • Oliveira, A., Lopes, A., y Soares, A., (2022). Excess Heat Factor climatology, trends and exposure across European Functional Urban Areas. Weather Clim Extremes, 36 100455. https://doi.org/10.1016/j.wace.2022.100455
  • Perch-Nielsen, S.L., Amelung, B., y Knutti, R. (2010). Future climate resources for tourism in Europe based on the daily Tourism Climatic Index. Clim Change, 103, 363–381. https://doi.org/10.1007/s10584-009-9772-2
  • Perry, A.H. (2001). More heat and drought–can Mediterranean tourism survive and prosper? In: Matzarakis, A., & De Freitas, C.R. (Eds.) Proceedings of the first international workshop on climate, tourism and recreation. (pp. 35–40)
  • Royé, D., Lorenzo, N., Rasilla, D., y Martí, A., (2019). Spatio-temporal variations of cloud fraction based on circulation types in the Iberian Peninsula. Int J Climatol, 39(3), 1716- 1732. https://doi.org/10.1002/joc.5914
  • Royé, D., Codesido, R., Tobías, A., y Taracido, M. (2020). Heat wave intensity and daily mortality in four of the largest cities of Spain. Environ Res, 182, 109027. https://doi.org/10.1016/j.envres.2019.109027
  • Royé, D., Sera, F., Tobías, A., Lowe, R., Gasparrini, A., Pascal, M., De’donato, F., Nunes, B., y Teixeira, J.P. (2021). Effects of Hot Nights on Mortality in Southern Europe. Epidemiology, 32(4), 487-498. https://doi.org/10.1097/EDE.0000000000001359
  • Russo, S., Sillmann J., y Fischer, E.M., (2015). Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ Res Lett, 10(12), 124003. https://doi.org/10.1088/1748-9326/10/12/124003
  • Rutty, M., Scott, D., Matthews, L., Burrowes, R., Trotman, A., Mahon, R., y Charles, A. (2020). An Inter-Comparison of the Holiday Climate Index (HCI:Beach) and the Tourism Climate Index (TCI) to Explain Canadian Tourism Arrivals to the Caribbean. Atmosphere, 11, 412. https://doi.org/10.3390/atmos11040412
  • Salata, F., Golasi, I., de Lieto Vollaro, R., y De Lieto Vollaro, A. (2016). Outdoor thermal comfort in the Mediterranean area. A transversal study in Rome, Italy. Build Environ, 96, 46– 61. https://doi.org/10.1016/j.buildenv.2015.11.023
  • Salata, F., Golasi, I., Proietti, R., y De Lieto Vollaro, A. (2017). Implications of climate and outdoor thermal comfort on tourism: the case of Italy. Int J Biometeorol, 61, 2229– 2244. https://doi.org/10.1007/s00484-017-1430-1
  • Scott, D. (2011) Why sustainable tourism must address climate change. J Sustain Tour 19, 17– 34. https://doi.org/10.1080/09669582.2010.539694
  • Scott, D., Rutty, M., Amelung, B., y Mantao, T. (2016). An Inter-Comparison of the Holiday Climate Index (HCI) and the Tourism Climate Index (TCI) in Europe. Atmosphere 7(6), 80. https://doi.org/10.3390/atmos7060080
  • Tang, M. (2013). Comparing the ‘tourism climate index’ and ‘holiday climate index’ in major European urban destinations. Master’s thesis, University of Waterloo. https://core.ac.uk/download/pdf/144146611.pdf , (acceso 2 de junio de 2022).
  • United Nations World Tourism Organization (UNWTO) (2007) Climate change and tourism— responding to global challenges. Summary. Joint UNWTO, UNEP, WMO.
  • Universal Thermal Climate Index (UTCI) (2009). Universal thermal climate index. http://www.utci.org/index.php , (acceso 11 de junio de 2022).
  • Vicedo-Cabrera, A.M., Guo, Y., Sera, F., et al., (2018). Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios. Clim Change, 150, 391- 402. https://doi.org/10.1007/s10584-018-2274-3
  • Turespaña. (2019). Memoria 2019. https://www.tourspain.es/eses/Conozcanos/MemoriasAnuales/Memoria%20TURESPA%C3%91A%202019.pdf , (acceso 5 de mayo de 2022).
  • World Meteorological Organization (WMO) (2009). Analysis of extremes in a changing climate in support of informed decisions for adaptation. World Meteorological Organization. Geneva. WCDMP-No.72
  • Yu, D.D., Rutty, M., Scott, D, y Li, S. (2021). A comparison of the holiday climate index:beach and the tourism climate index across coastal destinations in China. Int J Biometeorol, 65, 741–748. https://doi.org/10.1007/s00484-020-01979-w
  • Zeng, D., Jinkui, W., Yaqiong, M., Mingshan, D., Yanqiang, W., y Weibing, S. (2020). SpatialTemporal Pattern Changes of UTCI in the China-Pakistan Economic Corridor in Recent 40 Years. Atmosphere, 11, (8), 858. https://doi.org/10.3390/atmos11080858