Diseño y resultados de la encuesta sobre control de calidad de aceleradores lineales

  1. Miguel Martínez Albaladejo 1
  2. Manuel Vilches Pacheco 2
  3. Pedro Almendral Manzano 3
  4. Eva Ambroa Rey 4
  5. Carlos Luis Ferrer Gracia 5
  6. Jaime Pérez-Alija Fernández 6
  7. Ricardo Tortosa Oliver 7
  8. Françoise Lliso Valverde 8
  1. 1 Hospital General Universitario Santa Lucía, Cartagena, Murcia
  2. 2 Centro Médico de Asturias, Oviedo
  3. 3 Hospital Universitario de Badajoz, Badajoz
  4. 4 Consorci Sanitari de Terrassa (CST), Terrassa
  5. 5 Hospital Universitario La Paz, Madrid
  6. 6 Hospital de la Santa Creu i Sant Pau, Barcelona
  7. 7 Hospital IMED, Elche
  8. 8 Hospital Universitari i Politecnic La Fe, Valencia
Revista:
Revista de Física Médica

ISSN: 1576-6632

Ano de publicación: 2023

Volume: 24

Número: 1

Páxinas: 63-87

Tipo: Artigo

DOI: 10.37004/SEFM/2023.24.1.005 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Revista de Física Médica

Resumo

In March 2021, the Spanish Society of Medical Physics task group on quality control of accelerators sent an online sur-vey to the medical physics services and units regarding some aspects related to the purpose of their work. The survey was created with three objectives: to weigh the variability in the quality control plans, to establish the degree of adherence to national and international recommendations and to tune the task group criteria with those of the medical physics services and units in our field. The survey results show great variability of criteria in all aspects and tests and confirm the difficulty of establishing a quality plan for this equipment that responds to the prioritization objectives and is applicable to all the existing circumstances within our field. A quality control program should be established based on an objective analysis of the failure modes which enables the decision of which tests to include, establishing the necessary resources and optimizing their use. The development of a recommendation generally applicable is not easy, especially if we take into account the existing variety of equipment, instru-ments and therapeutic techniques developed.

Referencias bibliográficas

  • Pinza C, Lliso F. Control de Calidad En Aceleradores Linealesde Uso Clínico. 2009.
  • Klein EE, Hanley J, Bayouth J, et al. Task group 142 report: Quality assurance of medical accelerators. Med Phys. 2009;36(9):4197-4212. doi:10.1118/1.3190392
  • Kirkby C, Ghasroddashti E, Angers CP, Zeng G, Barnett E. COMP report: CPQR technical quality control guideline for medical linear accelerators and multileaf collimators. J Appl Clin Med Phys. 2018;19(2):22-28. doi:10.1002/acm2.12236
  • Patel I. Physics Aspects of Quality Control in Radiotherapy Report 81. In: IPEM Report 81, 2nd Edition. ; 2018.
  • Mans A, Schuring D, Arends MP, et al. The NCS code of practice for the quality assurance and control for volumetric modulated arc therapy. Phys Med Biol. 2016;61(19):7221-7235. doi:10.1088/0031-9155/61/19/7221
  • Smith K, Balter P, Duhon J, et al. AAPM Medical Physics Practice Guideline 8.a.: Linear accelerator performance
  • tests. J Appl Clin Med Phys. 2017;18(4):23-39. doi:10.1002/acm2.12080
  • Ford EC, Gaudette R, Myers L, et al. Evaluation of Safety in a Radiation Oncology Setting Using Failure Mode and Effects Analysis. Int J Radiat Oncol Biol Phys. 2009;74(3):852-858. doi:10.1016/j.ijrobp.2008.10.038
  • Masini L, Donis L, Loi G, et al. Application of failure mode and effects analysis to intracranial stereotactic radiation surgery by linear accelerator. Pract Radiat Oncol. 2014;4(6):392-397. doi:10.1016/j.prro.2014.01.006
  • Jaros D, Kolarevic G, Paraskevopoulou C, Katsari K. [P274] A failure mode and effect analysis of deep inspiration breathhold for left-sided breast cancer radiation therapy. Phys Med. 2018;52(2018):178-179. doi:10.1016/j.ejmp.2018.06.551
  • Teo PT, Hwang MS, Shields W (Gary), et al. Application of TG-100 risk analysis methods to the acceptance testing and commissioning process of a Halcyon linear accelerator. Med Phys. 2019;46(3):1341-1354. doi:10.1002/mp.13378
  • Huq MS, Fraass BA, Dunscombe PB, et al. The report of Task Group 100 of the AAPM: Application of risk analysis methods to radiation therapy quality management. Med Phys. 2016;43(7):4209-4262. doi:10.1118/1.4947547
  • O’Daniel JC, Yin FF. Quantitative Approach to Failure Mode and Effect Analysis for Linear Accelerator Quality Assurance. Int J Radiat Oncol Biol Phys. 2017;98(1):56-62. doi:10.1016/j.ijrobp.2017.01.035
  • Bonfantini F, Giandini T, Meroni S, et al. Application of failure mode and effects analysis to optimization of linac quality controls protocol. Med Phys. 2019;46(6):2541-2555. doi:10.1002/mp.13538
  • Ochi Y, Saito A, Kawahara D, et al. A novel risk analysis of clinical reference dosimetry based on failure modes and
  • effects analysis. Phys Med. 2019;58:59-65. doi:10.1016/j.ejmp.2019.01.014
  • Das IJ, Cheng CW, Watts RJ, et al. Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM. Med Phys. 2008;35(9):4186-4215. doi:10.1118/1.2969070
  • Almond PR, Biggs PJ, Coursey BM, et al. AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys. 1999;26(9):1847-1870. doi:10.1118/1.598691