Proteína precursora del beta-amiloide (β-App) y daño axonal difuso tras un traumatismo craneoencefálicoun punto de vista forense

  1. M.A. Romero Tirado
  2. Blanco Pampin
  3. R Gallego Gómez
  4. L García-Caballero
  5. M. Varela Gómez
Revista:
Medicina legal de Costa Rica

ISSN: 2215-5287 1409-0015

Ano de publicación: 2022

Volume: 39

Número: 2

Páxinas: 37-50

Tipo: Artigo

Outras publicacións en: Medicina legal de Costa Rica

Resumo

Resumen La proteína precursora del β- Amiloide (β-APP) es una glicoproteína de membrana y un componente habitual de las neuronas. Tiene funciones en el crecimiento y la adhesión celular tras un traumatismo. Es transportada mediante transporte rápido axonal anterógrado y se acumula dentro de las neuronas cuando se daña citoesqueleto. Este proceso es activo, es decir consume energía. El β-APP no es específico de los traumatismos. Se acumula en cualquier circunstancia en la que se dañen los axones, tal como la hipoxia, alteraciones metabólicas, y cualquier otra causa de edema cerebral y aumento de la presión intracraneal que puedan conducir a un daño axonal difuso (DAI) En el presente estudio estudiamos la expresión de esta proteína en casos de traumatismo cráneo-encefálico con diferente evolución cronológica El daño del citoesqueleto producido por la proteólisis, junto con la alteración de las quinasas y las fosfatasas, aumentan la permeabilidad de la membrana, lo que provoca la entrada de calcio en la célula que, a su vez, activa la calmodulina que hace que los neurofilamentos se compacten, los microtúbulos desaparezcan y se rompa la espectrina. Esta disrupción del citoesqueleto tiene como consecuencia que las sustancias que se transportan a su través, se acumulen, sobre todo en las zonas afectadas por el DAI. Al final de todo este proceso, los axones se rompen, lo que se conoce como axotomía secundaria. El estudio de la acumulación del β-APP es útil para valorar la extensión del DAI y para determinar el tiempo de supervivencia tras el traumatismo o cualquier otro daño cerebral.

Referencias bibliográficas

  • Morganti-Kossmann, MC,Satgunaseelan, L,Bye, N,Kossmann, T. (2007). Modulation of immune response by head injury.. Injury Int J Care Injured. 38. 1392
  • Faul, M,Conrado, V.. (2015). Epidemiology of traumatic brain injury. Handb Clin Neurol. 127. 3-13
  • Graham, DI,Smith, C,Reichard, R,Leclercq, PD,Gentelman, SM.. (2004). Trials and tribulations of using Beta-amyloid precursor protein inmunohistochemistry to evaluate traumatic brain injury in adults. Forensic Sci Int.. 146. 89-96
  • Tagliaferri, F,Compagnone, C,Korsic, M,Servadei, F,Kraus, J.. (2006). A systematic review of brain injury epidemiology in Europe. Acta Neurochir (Wien). 148. 255
  • Maas, AI,Stochetti, N,Bullock, R.. (2008). Moderate and severe traumatic brain injury in adults. Lancet Neurol. 7. 728
  • Roozenbeek, B,Maas, AIR,Menon, DK.. (2013). Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol. 9. 231
  • Li, DR,Zhang, F,Wang, Y,Tan, XH,Quiao, DF,Wang, HJ,t, Michue,Maeda, H.. (2012). Quantitative analysis of GFAP and S100 protein-immunopositive astrocytes to investigate the severity of traumatic brain injury. Legal Medicine. 14. 84-92
  • Papa, L,Silvestri, S,Brophy, GM,Giordano, P,Falk, JL,Braga, CF,Tan, CN,Ameli, NJ,Demery, JA,Dixit, NK,Mendes, ME,Hayes, RL,Wang, KKW,Robertson, CS.. (2014). GFAP Out-performs S100β in detecting traumatic intracranial lesions on computed tomography in trauma patients with mild traumatic brain injury and those with extracranial lesions.. J. Neurotrauma. 31. 1815
  • Bieniek, KF,Ross, OA,Cormier, KA,Walton, RL,Soto-Ortolaza, A,Johnston, AE,DeSaro, P,Boylan, KB,Graff-Radford, NR,Wszolek, ZK,Rademakers, R,Boeve, BF,McKee, AC,Dickson, DW.. (2015). Chronic traumatic encephalopathy pathology in a neurodegenerative disorders brain bank.. Acta Neuropathol.. 130. 877
  • Hamdeh, SA,Waara, ER,Möller, C,Söderberg, L,Basun, H,Alafuzoff, I,Hillered, L,Lannfelt, L,Ingelsson, M,Marklund, N.. (2018). Rapid amyloid β oligomer and potofibril accumulation in traumatic brain injury.. Brain Pathology. 28. 451
  • Stein, TD,Montenigro, PH,Alvarez, VE,Xia, W,Crary, JF,Tripodis, Y,Daneshvar, DH,Mez, J,Solomon, T,Meng, G,Kubilus, CA,Cormier, KA,Meng, S,Babcock, K,Kiernan, P,Murphy, L,Nowinski, CJ,Martin, B,Dixon, D,Stern, RA,Cantu, RC,Kowall, NW,McKee, AC.. (2015). Beta-amyloid deposition in chronic traumatic encephalopathy. Acta Neuropathol.. 130. 21-34
  • Winston, CN,Wilkins, T,Barton, DJ,Washington, PM,Loane, DJ,Zapple, DN,Burns, MP.. (2013). Controlled cortical impact results in an extensive loss of dendritic spines that is not mediated by injury-induced amyloid-beta accumulation. J. Neurotrauma. 30. 1966
  • Siman R, Toraskar N,Dang A, McNeil E,McGarveyM, Plaum J,Maloney E, Grady MS... (2009). A panel of neuron-enriched proteins as markers for traumatic brain injury in humans.. J. Neurotrauma. 26. 1867
  • McKenzie, KJ,McLellan, DR,Gentleman, SM,Maxwell, WL,Gennarlli, TA,Graham, DI.. (1996). Is beta-APP a marker of axonal damage in short-surviving head injury?.. Acta Neuropathol. 92. 608
  • Itoh, T,Satou, T,Nishida, S,Tsubaki, M,Hashimoto, S,Itoh, H.. (2009). Expression of amyloid precursor protein after rat traumatic brain injury. Neurol Res. 31. 103
  • Hayashi, T,Ago, K,Nakamae, T,Higo, E,Ogata, M.. (2015). Two different immunostaining patterns of beta-amyloid precursor protein (APP) may distinguish traumatic from nontraumatic axonal injury.. Int J Legal Med. 129. 1085
  • Oehmichen, M,Meissner, C,Schmidt, V,Pedal, I,König, HG,Saternus, KS.. (1998). Axonal injury: a diagnostic tool in forensic neuropathology. Forensic Sci Int. 95. 67-83
  • Kelley, BJ,Farkas, O,Liftshitz, J,Povlishock, JT. (2006). Traumatic axonal injury in the perisomatic domain triggers ultrarapid secondary axotomy and wallerian degeneration.. Exp Neurol. 198. 350
  • Staal, JA.,Dickinson, TC.,Gasperini, R.,Liu, Y.,Foa, L.,Vickers, JC.. (2010). Initial calcium release from intracellular stores followed by calcium dysregulation is linked to secondary axotomy following transient axonal stretch injury. J. Neurochem. 112. 1147
  • Chen, XH,Siman, R,Iwata, A,Meaney, DF,Trojanowski, JQ,Smith, DH.. (2004). Long-term accumulation of amyloid beta, beta secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma.. AJP. 165. 357
  • Kokiko-Cochran, ON,Godbout, JP.. (2018). The inflammatory continuum of traumatic brain injury and Alzheimer's disease.. Front Immunol. 9. 672
  • Shishido, H,Ueno, M,Sato, K,Matsumura, M,Toyota, Y,Kirino, Y,Tamiya, T,Kawai, N,Kishimoto, Y.. (2019). Traumatic brain injury by weight-drop method causes transiente amyloid-β deposition and acute cognitive deficits in mice.. Behavioural Neurology. 8
  • Onyszchuk, G,LeVine, SM,Brooks, WM,Berman, NEJ.. (2009). Post-acute pathological changes in the thalamus and internal capsule in aged mice following controlled cortical impact injury; a magnetic resonance imaging, iron histochemica, and glial immunohistochemical study. Neurosci Lett.. 452. 204
  • Oehmichen, M,Theuerkauf, I,Meissner, C.. (1999). Is traumatic axonal injury (AI) associated with an early microglial activation? Application rl a double-labeling technique for simultaneous detection of microglia and AI. Acta Neuropathol. 97. 491
  • Willemse-Van Son, AHP,Ribbers, GM,Hop, WCJ,Van Duijin, CM,Stam, HJ.. (2007). Association between apolipoprotein-ε4 and long-term outcome after traumatic brain injury. J Neurol Neurosurg Psychiatry. 79. 426
  • Omalu, BI.. (2004). Diagnosis of traumatic diffuse axonal injury. Am J Forensic Med Pathol.. 25. 270
  • Ubukata, S,Oishi, N,Higashi, T,Kagawa, S,Yamauchi, H,Okuyama, C,Watananbe, H,Ono, M,Saji, H,Aso, T,Murai, T,Ueda, K.. (2020). Spatil patterns of amyloid deposition in patients with chronic focal or diffuse traumatic brain injury using F-FPYBF-2 PET.. Neuropsychiatric Disease and Treatment.. 16. 2719
  • Grovola, MR,Paleologos, N,Brown, DP,Tran, N,Wofford, KL,Harris, JP,Browne, KD,Shewokis, PA,Wolf, JA,Cullen, DK,Duda, JE.. (2021). Diverse changes in microglia morphology and axonal pathology during the course of 1 year after mild traumatic brain injury in pigs.. Brain Pathology.. 31. 12953
  • Orthobagyi, T,Wise, S,Hunt, N,Cary, N,Djurovic, V,Fegan-Earl, A,Shorrock, K,Rouse, D,Al-Sarraj, S.. (2007). Traumatic axonal damage in the brain can be detected using beta-APP immunohistochemistry within 35 minutes after head injury to human adults. Neuropathol Appl Neurobiol. 33. 226
  • Reichard, R,Smith, C,Graham, DI. (2005). The significance of beta amyloid precursor protein inmunoreactivity in forensic practice.. Neuropathol Appl Neurobiol. 31. 304
  • Rahaman, P,Del Bigio, M.. (2018). Histology of brain trauma and hypoxia-ischemia. Acad Forensic Pathol. 8. 539
  • Morrison, C,McKenzie, JM.. (2008). Axonal injury in head injuries with very short survival times.. Neuropathol Appl Neurobiol.. 34. 124
  • Ogata, M.. (2007). Early diagnosis of diffuse brain damage resulting from a blunt head injury.. Leg Med. 9. 105
  • Smith, C,Gentelman, SM,Leclercq, PD,Muray, LS,Griffin, WS,Graham, DI,Nicoll, JA.,injury., The. (2013). Neuropathol. Appl. Neurobiol. 39. 654
  • Romero, MA,Blanco, JM,Gallego, R.. (2018). Dating of traumatic brain injury in forensic cases using immunohistochemical markers(I): Neurofilaments and β-Amyloid precursor Protein. Am J Forensic Med Pathol. 39. 201
  • Bisht, A,Garg, K,Agrwal, D,Singh, PK,Satyarthee, GD,Gupta, D,Sinha, S,Kakkar, A,Suri, V,Lalwani, S,Kale, SS,Sharma, BS.. (2013). Histological changes in thalamus in short term survivors following traumatic injury: an autopsy study. Neurol. India. 61. 599-605
  • Uryu, K,Chen, XH,Martínez, D,Browne, KD,Johnson, VE,Graham, DI,Lee, VM,Trojanowski, JQ,Smith, DH.. (2007). Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans.. Exp Neurol.. 208. 185
  • Li, S,Sun, Y,Shan, D,Feng, B,Xing, J,Duan, Y,Dai, J,Lei, H,Zhou, Y.. (2013). Temporal profiles of axonal injury following impact acceleration traumatic brain injury in rats. A comparative study with diffusion tensor imaging and morphological analysis.. Int. J. Legal Med.. 127. 159
  • Wilkinson, AE,Brideges, LR,Sivaloganathan, S.. (1999). Correlation of survival tiem with size of axonal swellings in diffuse axonal injury.. Acta Neuropathol. 98. 197-202
  • Zakaria, N.,Kallakuri, S,Bandaru, S,Cavanough, JM. (2012). Temporal assessment of traumatic axonal injury in the rat corpus callosum and optic chiasm. Brain Res.. 1467. 81-90
  • Pierce Jean, ES,Trojanowski, JQ,Graham, DI,Smith, DH,McIntosh, TK.. (1996). Inmunohistochemical characterization of alterations in the distribution of amyloid precursor proteins and beta amyloid peptide after experimental brain injury in the rat.. J Neuroscien. 16. 1083
  • Ekmark-Lewén, S,Flygt, J,Kiwanuka, O,Meyerson, BJ,Lewén, A,Hillered, L,Marklund, N.. (2013). Traumatic axonal injury in the mouse is accompained by a dynamic inflammatory response, astroglial reactivity and complex behavioural changes.. J. Neuronfl. 10. 44-63
  • Raghupathi, R.. (2004). Cell death mechanisms following traumatic brain injury. Brain Pathol. 14. 215
  • Dolinak, D,Reichard, R.. (2006). An overview of inflicted head injury in infants and young children, with a review of beta amyloid precursor protein immunohistochemistry. Arch Pathol Lab Med. 130. 721