Personalized bacteriophage therapy outcomes for 100 consecutive cases: a multicentre, multinational, retrospective observational study
- Pirnay, Jean-Paul
- Djebara, Sarah
- Steurs, Griet
- Griselain, Johann
- Cochez, Christel
- De Soir, Steven
- Glonti, Tea
- Spiessens, An
- Vanden Berghe, Emily
- Green, Sabrina
- Wagemans, Jeroen
- Lood, Cédric
- Schrevens, Eddie
- Chanishvili, Nina
- Kutateladze, Mzia
- de Jode, Mathieu
- Ceyssens, Pieter-Jan
- Draye, Jean-Pierre
- Verbeken, Gilbert
- De Vos, Daniel
- Rose, Thomas
- Onsea, Jolien
- Van Nieuwenhuyse, Brieuc
- Pang, Kim Win
- Metsemakers, Willem-Jan
- Van der Linden, Dimitri
- Chatzis, Olga
- Eskenazi, Anaïs
- Lopez, Angel
- De Voeght, Adrien
- Rousseau, Anne Françoise
- Tilmanne, Anne
- Vens, Daphne
- Gérain, Jean
- Layeux, Brice
- Vlieghe, Erika
- Baar, Ingrid
- Van Ierssel, Sabrina
- Van Laethem, Johan
- Guiot, Julien
- De Roock, Sophie
- Jennes, Serge
- Uyttebroek, Saartje
- Van Gerven, Laura
- Hellings, Peter W.
- Dupont, Lieven
- Debaveye, Yves
- Devolder, David
- Spriet, Isabel
- De Munter, Paul
- Depypere, Melissa
- Vanfleteren, Michiel
- Cornu, Olivier
- Verhulst, Stijn
- Boiy, Tine
- Lamote, Stoffel
- Van Zele, Thibaut
- Wieërs, Grégoire
- Courtin, Cécile
- Lebeaux, David
- Sartre, Jacques
- Ferry, Tristan
- Laurent, Frédéric
- Paul, Kevin
- Di Luca, Mariagrazia
- Gottschlich, Stefan
- Tkhilaishvili, Tamta
- Cesta, Novella
- Racenis, Karlis
- Barbosa, Telma
- López-Cortés, Luis Eduardo
- Tomás, Maria
- Hübner, Martin
- Pham, Truong-Thanh
- Nagtegaal, Paul
- Ten Oever, Jaap
- Daniels, Johannes
- Loubert, Maartje
- Iheb, Ghariani
- Jones, Joshua
- Hall, Lesley
- Young, Matthew
- Balarjishvili, Nana
- Tediashvili, Marina
- Tong, Yigang
- Rohde, Christine
- Wittmann, Johannes
- Hazan, Ronen
- Nir-Paz, Ran
- Azeredo, Joana
- Krylov, Victor
- Cameron, David
- Pitton, Melissa
- Que, Yok-Ai
- Resch, Gregory
- McCallin, Shawna
- Dunne, Matthew
- Kilcher, Samuel
- Soentjens, Patrick
- Lavigne, Rob
- Merabishvili, Maya
- Bacteriophage Therapy Providers
- Bacteriophage Donors
- Show all authors +
ISSN: 2058-5276
Year of publication: 2024
Volume: 9
Issue: 6
Pages: 1434-1453
Type: Article
More publications in: Nature Microbiology
Bibliographic References
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).
- Dublanchet, A. & Fruciano, E. Brève histoire de la phagothérapie [A short history of phage therapy]. Med. Mal. Infect. 38, 415–420 (2008).
- Uyttebroek, S. et al. Safety and efficacy of phage therapy in difficult-to-treat infections: a systematic review. Lancet Infect. Dis. 22, e208–e220 (2022).
- Pirnay, J.-P. & Kutter, E. Bacteriophages: it’s a medicine, Jim, but not as we know it. Lancet Infect. Dis. 21, 309–311 (2021).
- Schooley, R. T. et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 61, e00954-17 (2017).
- Eskenazi, A. et al. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae. Nat. Commun. 13, 302 (2022).
- Dedrick, R. M. et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 25, 730–733 (2019).
- Pirnay, J. P. et al. The magistral phage. Viruses 10, 64 (2018).
- Instructions for the Administration of Liquid Staphylococcal Bacteriophage Preparations for Injection (in Russian) (Ministry of Health and Ministry of Medical and Microbiological Industry of the USSR, 1987).
- Instructions for the Application of Liquid Streptococcal Bacteriophage Preparations (in Russian) (Ministry of Health and Ministry of Medical and Microbiology Industry of the USSR, 1987).
- Instructions for the Application of Combined Liquid Pyobacteriophage Preparations (in Russian) (Ministry of Medical and Microbiology Industry of the USSR, 1989).
- Djebara, S. et al. Processing phage therapy requests in a Brussels military hospital: lessons identified. Viruses 11, 265 (2019).
- Young, M. J. et al. Phage therapy for diabetic foot infection: a case series. Clin. Ther. 45, 797–801 (2023).
- Vogt, D. et al. “Beyond antibiotic therapy” – Zukünftige antiinfektiöse Strategien – Update 2017 [Beyond antibiotic therapy – Future antiinfective strategies – Update 2017]. Unfallchirurg 120, 573–584 (2017).
- Jennes, S. et al. Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury—a case report. Crit. Care 21, 129 (2017).
- Lebeaux, D. et al. A case of phage therapy against pandrug-resistant Achromobacter xylosoxidans in a 12-year-old lung-transplanted cystic fibrosis patient. Viruses 13, 60 (2021).
- Van Nieuwenhuyse, B. et al. Bacteriophage-antibiotic combination therapy against extensively drug-resistant Pseudomonas aeruginosa infection to allow liver transplantation in a toddler. Nat. Commun. 13, 5725 (2022).
- Van Nieuwenhuyse, B. et al. A case of in situ phage therapy against Staphylococcus aureus in a bone allograft polymicrobial biofilm infection: outcomes and phage-antibiotic interactions. Viruses 13, 1898 (2021).
- Onsea, J. et al. Bacteriophage application for difficult-to-treat musculoskeletal infections: development of a standardized multidisciplinary treatment protocol. Viruses 11, 891 (2019).
- Ferry, T. et al. Personalized bacteriophage therapy to treat pandrug-resistant spinal Pseudomonas aeruginosa infection. Nat. Commun. 13, 4239 (2022).
- Racenis, K. et al. Use of phage cocktail BFC 1.10 in combination with ceftazidime-avibactam in the treatment of multidrug-resistant Pseudomonas aeruginosa femur osteomyelitis - a case report. Front. Med. 9, 851310 (2022).
- Bakuradze, N. et al. Characterization of a bacteriophage GEC_vB_Bfr_UZM3 active against Bacteroides fragilis. Viruses 15, 1042 (2023).
- Paul, K. et al. Bacteriophage rescue therapy of a vancomycin-resistant Enterococcus faecium infection in a one-year-old child following a third liver transplantation. Viruses 13, 1785 (2021).
- Tkhilaishvili, T. et al. Successful case of adjunctive intravenous bacteriophage therapy to treat left ventricular assist device infection. J. Infect. 83, e1–e3 (2021).
- Racenis, K. et al. Successful bacteriophage–antibiotic combination therapy against multidrug-resistant Pseudomonas aeruginosa left ventricular assist device driveline infection. Viruses 15, 1210 (2023).
- Blasco, L. et al. Case report: analysis of phage therapy failure in a patient with a Pseudomonas aeruginosa prosthetic vascular graft infection. Front. Med. 10, 1199657 (2023).
- Takeuchi, I. et al. The presence of two receptor-binding proteins contributes to the wide host range of staphylococcal twort-like phages. Appl. Environ. Microbiol. 82, 5763–5774 (2016).
- Treepong, P. et al. Global emergence of the widespread Pseudomonas aeruginosa ST235 clone. Clin. Microbiol. Infect. 24, 258–266 (2018).
- Hrabák, J. et al. Regional spread of Pseudomonas aeruginosa ST357 producing IMP-7 metallo-β-lactamase in Central Europe. J. Clin. Microbiol. 49, 474–475 (2011).
- Ceyssens, P. J. et al. Phenotypic and genotypic variations within a single bacteriophage species. Virol. J. 8, 134 (2011).
- Kilmury, S. L. N. & Burrows, L. L. The Pseudomonas aeruginosa PilSR two-component system regulates both twitching and swimming motilities. mBio 9, e01310–e01318 (2018).
- Nunn, D., Bergman, S. & Lory, S. Products of three accessory genes, pilB, pilC, and pilD, are required for biogenesis of Pseudomonas aeruginosa pili. J. Bacteriol. 172, 2911–2919 (1990).
- Wehbi, H. et al. The peptidoglycan-binding protein FimV promotes assembly of the Pseudomonas aeruginosa type IV pilus secretin. J. Bacteriol. 193, 540–550 (2011).
- Kropinski, A. M., Chan, L., Jarrell, K. & Milazzo, F. H. The nature of Pseudomonas aeruginosa strain PAO bacteriophage receptors. Can. J. Microbiol. 23, 653–658 (1977).
- Koderi Valappil, S. et al. Survival comes at a cost: a coevolution of phage and its host leads to phage resistance and antibiotic sensitivity of Pseudomonas aeruginosa multidrug resistant strains. Front. Microbiol. 12, 783722 (2021).
- Yoshida, H., Bogaki, M., Nakamura, M. & Nakamura, S. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob. Agents Chemother. 34, 1271–1272 (1990).
- Takenouchi, T., Sakagawa, E. & Sugawara, M. Detection of gyrA mutations among 335 Pseudomonas aeruginosa strains isolated in Japan and their susceptibilities to fluoroquinolones. Antimicrob. Agents Chemother. 43, 406–409 (1999).
- Yonezawa, M. et al. Analysis of the NH2-terminal 87th amino acid of Escherichia coli GyrA in quinolone-resistance. Microbiol. Immunol. 39, 517–520 (1995).
- Nakajima, A., Sugimoto, Y., Yoneyama, H. & Nakae, T. High-level fluoroquinolone resistance in Pseudomonas aeruginosa due to interplay of the MexAB-OprM efflux pump and the DNA gyrase mutation. Microbiol. Immunol. 46, 391–395 (2002).
- Church, D., Elsayed, S., Reid, O., Winston, B. & Lindsay, R. Burn wound infections. Clin. Microbiol. Rev. 19, 403–434 (2006).
- Rose, T. et al. Experimental phage therapy of burn wound infection: difficult first steps. Int. J. Burns Trauma 4, 66–73 (2014).
- Pirnay, J.-P. Phage therapy in the year 2035. Front. Microbiol. 11, 1171 (2020).
- Suh, G. A. et al. Considerations for the use of phage therapy in clinical practice. Antimicrob. Agents Chemother. 66, e0207121 (2022).
- Luria, S. E. & Delbrück, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943).
- Castledine, M. et al. Parallel evolution of Pseudomonas aeruginosa phage resistance and virulence loss in response to phage treatment in vivo and in vitro. Elife 11, e73679 (2022).
- Westra, E. R. et al. Parasite exposure drives selective evolution of constitutive versus inducible defense. Curr. Biol. 25, 1043–1049 (2015).
- Gu Liu, C. et al. Phage-antibiotic synergy is driven by a unique combination of antibacterial mechanism of action and stoichiometry. mBio 11, e01462–20 (2020).
- Fungo, G. B. N. et al. “Two Is Better Than One”: the multifactorial nature of phage-antibiotic combinatorial treatments against ESKAPE-induced infections. Phage 4, 55–67 (2023).
- Torres-Barceló, C. & Hochberg, M. E. Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol. 24, 249–256 (2016).
- Torres-Barceló, C. Phage therapy faces evolutionary challenges. Viruses 10, 323 (2018).
- Chan, B. K. et al. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci. Rep. 6, 26717 (2016).
- Abedon, S. T. Phage-antibiotic combination treatments: antagonistic impacts of antibiotics on the pharmacodynamics of phage therapy? Antibiotics 8, 182 (2019).
- Górski, A. et al. Phage as a modulator of immune responses: practical implications for phage therapy. Adv. Virus Res. 83, 41–71 (2012).
- Instructions for the Application of a Liquid Staphylococcal Phage Preparation for Injection (in Russian) (Ministry of Health of the USSR, 1986).
- Dedrick, R. M. et al. Potent antibody-mediated neutralization limits bacteriophage treatment of a pulmonary Mycobacterium abscessus infection. Nat. Med. 27, 1357–1361 (2021).
- Onsea, J. et al. Bacteriophage therapy for difficult-to-treat infections: the implementation of a multidisciplinary phage task force (The PHAGEFORCE Study Protocol). Viruses 13, 1543 (2021).
- Regulation (EU) No 536/2014 OF THE European Parliament and of the Council of 16 April 2014 on Clinical Trials On Medicinal Products For Human Use, And Repealing Directive 2001/20/EC (Official Journal of the European Union, 2014).
- Merabishvili, M. et al. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS ONE 4, e4944 (2009).
- Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
- Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, e1005595 (2017).
- Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A. Using SPAdes de novo assembler. Curr. Protoc. Bioinformatics 70, e102 (2020).
- Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
- Arndt, D. et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16–W21 (2016).
- Song, W. et al. Prophage Hunter: an integrative hunting tool for active prophages. Nucleic Acids Res. 47, W74–W80 (2019).
- Kutter, E. Phage host range and efficiency of plating. Methods Mol. Biol. 501, 141–149 (2009).
- Friman, V. P. et al. Pre-adapting parasitic phages to a pathogen leads to increased pathogen clearance and lowered resistance evolution with Pseudomonas aeruginosa cystic fibrosis bacterial isolates. J. Evol. Biol. 29, 188–198 (2016).
- Appelmans, R. Le dosage du Bacteriophage. (in French) Compt. Rend. Soc. Biol. 85, 1098 (1921).
- Burrowes, B. H., Molineux, I. J. & Fralick, J. A. Directed in vitro evolution of therapeutic bacteriophages: the Appelmans Protocol. Viruses 11, 241 (2019).
- Department for Industrial Bacterial and Viral Preparations. Guidelines for the Production of Combined Pyobacteriophage Solutions. N242-82 (in Russian) (Ministry of Health of the USSR, 1982).
- Guidelines for the Production of Staphylococcal Bacteriophage Solutions for Injection (in Russian) (Ministry of Health of the USSR, 1986).
- Department for the Monitoring of the Introduction of New Medicines and Medical Equipment. Staphylococcal Bacteriophage Solutions for Injection. BФC 42-68BC-87 (in Russian) (Ministry of Health of the USSR, Pharmacopoeia Commission, 1987).
- Pharmacopoeia Article Concerning Combined Pyobacteriophage Solutions. ФC 42-240BC-8 (in Russian) (Ministry of Health of the USSR, Pharmacopoeia Commission, 1989).
- Merabishvili, M., Pirnay, J.-P. & De Vos, D. Guidelines to compose an ideal bacteriophage cocktail. Methods Mol. Biol. 1693, 99–110 (2018).
- Duyvejonck, H. et al. Evaluation of the stability of bacteriophages in different solutions suitable for the production of magistral preparations in Belgium. Viruses 13, 865 (2021).
- Merabishvili, M. et al. Stability of bacteriophages in burn wound care products. PLoS ONE 12, e0182121 (2017).
- Astudillo, A., Leung, S. S. Y., Kutter, E., Morales, S. & Chan, H. K. Nebulization effects on structural stability of bacteriophage PEV 44. Eur. J. Pharm. Biopharm. 125, 124–130 (2018).
- Carrigy, N. B. et al. Anti-tuberculosis bacteriophage D29 delivery with a vibrating mesh nebulizer, jet nebulizer, and soft mist inhaler. Pharm. Res. 34, 2084–2096 (2017).
- Aslam, S. et al. Lessons learned from the first 10 consecutive cases of intravenous bacteriophage therapy to treat multidrug-resistant bacterial infections at a single center in the United States. Open Forum Infect. Dis. 7, ofaa389 (2020).
- Cano, E. J. et al. Phage therapy for limb-threatening prosthetic knee Klebsiella pneumoniae infection: case report and in vitro characterization of anti-biofilm activity. Clin. Infect. Dis. 73, e144–e151 (2021).
- Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).
- Brown, C. L. et al. mobileOG-db: a manually curated database of protein families mediating the life cycle of bacterial mobile genetic elements. Appl. Environ. Microbiol. 88, e0099122 (2022).
- Starikova, E. V. et al. Phigaro: high-throughput prophage sequence annotation. Bioinformatics 36, 3882–3884 (2020).
- Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).
- Gao, F. & Zhang, C. T. GC-Profile: a web-based tool for visualizing and analyzing the variation of GC content in genomic sequences. Nucleic Acids Res. 34, W686–W691 (2006).
- Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).
- Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).
- Adams, M. H. Bacteriophages (Interscience Publishers, 1959).
- Harris, P. A. et al. Research electronic data capture (REDCap) – a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 42, 377–381 (2009).
- Magiorakos, A. P. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18, 268–281 (2012).
- McDonnell, A. et al. Efficient delivery of investigational antibacterial agents via sustainable clinical trial networks. Clin. Infect. Dis. 63, S57–S59 (2016).
- R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).
- Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).
- Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33, 2938–2940 (2017).
- Kahle, D. & Wickham, H. ggmap: spatial visualization with ggplot2. R J. 5, 144–161 (2013).
- Massicotte, P. & South, A. rnaturalearth: world map data from natural earth. R package version 0.3.2.9000 https://cran.r-project.org/package=rnaturalearth (2023).