Radiomics in Gynaecological Imaging: A State-of-the-Art Review
- Franco, Paolo Niccolò 2
- Vernuccio, Federica 4
- Maino, Cesare 2
- Cannella, Roberto 3
- Otero-García, Milagros 1
- Ippolito, Davide 25
- 1 Radiology Department, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
- 2 Department of Diagnostic Radiology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
- 3 Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
- 4 Institute of Radiology, University Hospital of Padova, 35128 Padova, Italy
- 5 School of Medicine, Università Milano-Bicocca, Piazza dell’Ateneo Nuovo 1, 20100 Milano, Italy
ISSN: 2076-3417
Year of publication: 2023
Volume: 13
Issue: 21
Pages: 11839
Type: Article
More publications in: Applied Sciences
Bibliographic References
- Gjelsteen, (2008), Surg. Clin. N. Am., 88, pp. 361, 10.1016/j.suc.2008.01.005
- Forstner, R., Cunha, T.M., and Hamm, B. (2019). MRI and CT of the Female Pelvis, Springer. [2nd ed.].
- Daoud, T., Sardana, S., Stanietzky, N., Klekers, A.R., Bhosale, P., and Morani, A.C. (2022). Recent Imaging Updates and Advances in Gynecologic Malignancies. Cancers, 14.
- Michalet, (2021), Br. J. Radiol., 94, pp. 20210032, 10.1259/bjr.20210032
- Huang, (2023), Insights Imaging, 14, pp. 117, 10.1186/s13244-023-01464-z
- Kontopantelis, (2023), Int. J. Gynecol. Cancer, 33, pp. 1070, 10.1136/ijgc-2023-004313
- Zhang, (2022), Cancer Imaging, 22, pp. 35, 10.1186/s40644-022-00474-2
- Shur, (2021), RadioGraphics, 41, pp. 1717, 10.1148/rg.2021210037
- Nougaret, (2022), Insights Imaging, 13, pp. 60, 10.1186/s13244-021-01152-w
- Halpern, (2000), Am. J. Roentgenol., 175, pp. 109, 10.2214/ajr.175.1.1750109
- Zhou, S.K., Rueckert, D., and Fichtinger, G. (2020). Handbook of Medical Image Computing and Computer Assisted Intervention, Academic Press.
- Ma, (2010), Comput. Methods Biomech. Biomed. Eng., 13, pp. 235, 10.1080/10255840903131878
- Navab, N., Hornegger, J., Wells, W.M., and Frangi, A. (2015). Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Springer.
- Avanzo, (2020), Med. Phys., 47, pp. e185, 10.1002/mp.13678
- Lee, J., Jeon, J., Hong, Y., Jeong, D., Jang, Y., Jeon, B., Baek, H.J., Cho, E., Shim, H., and Chang, H.-J. (2023). Generative Adversarial Network with Radiomic Feature Reproducibility Analysis for Computed Tomography Denoising. Comput. Biol. Med., 159.
- Foltyn-Dumitru, M., Schell, M., Rastogi, A., Sahm, F., Kessler, T., Wick, W., Bendszus, M., Brugnara, G., and Vollmuth, P. (2023). Impact of Signal Intensity Normalization of MRI on the Generalizability of Radiomic-Based Prediction of Molecular Glioma Subtypes. Eur. Radiol., 1–9.
- Kocak, (2023), Eur. J. Radiol., 167, pp. 111088, 10.1016/j.ejrad.2023.111088
- Orlhac, (2019), Radiology, 291, pp. 53, 10.1148/radiol.2019182023
- Crosbie, (2022), Lancet, 399, pp. 1412, 10.1016/S0140-6736(22)00323-3
- Moore, (2017), Am. Soc. Clin. Oncol. Educ. Book, 37, pp. 435, 10.1200/EDBK_175666
- Sorosky, (2012), Obstet. Gynecol., 120, pp. 383, 10.1097/AOG.0b013e3182605bf1
- Colombo, (2016), Ann. Oncol., 27, pp. 16, 10.1093/annonc/mdv484
- Braun, (2016), Am. Fam. Physician, 93, pp. 468
- Nougaret, (2019), Eur. Radiol., 29, pp. 792, 10.1007/s00330-018-5515-y
- Faria, (2019), Semin. Ultrasound CT MR, 40, pp. 287, 10.1053/j.sult.2019.04.001
- Berek, (2023), Int. J. Gynecol. Obstet., 162, pp. 383, 10.1002/ijgo.14923
- Ulrich, (2011), Climacteric, 14, pp. 418, 10.3109/13697137.2010.550974
- Murali, (2014), Lancet Oncol., 15, pp. e268, 10.1016/S1470-2045(13)70591-6
- Bokhman, (1983), Gynecol. Oncol., 15, pp. 10, 10.1016/0090-8258(83)90111-7
- Cancer Genome Atlas Research Network, Kandoth, C., Schultz, N., Cherniack, A.D., Akbani, R., Liu, Y., Shen, H., Robertson, A.G., Pashtan, I., and Shen, R. (2013). Integrated Genomic Characterization of Endometrial Carcinoma. Nature, 497, 67–73.
- Larson, (1996), Obstet. Gynecol., 88, pp. 394, 10.1016/0029-7844(96)00161-5
- Ludwig, (1995), Int. J. Gynaecol. Obstet., 49, pp. S1, 10.1016/0020-7292(95)02403-Y
- Concin, (2021), Int. J. Gynecol. Cancer, 31, pp. 12, 10.1136/ijgc-2020-002230
- Nikolic, (2019), Insights Imaging, 10, pp. 19, 10.1186/s13244-019-0696-8
- Nagy, (2021), Pathol. Oncol. Res., 27, pp. 611088, 10.3389/pore.2021.611088
- Manganaro, (2021), Br. J. Radiol., 94, pp. 20201314, 10.1259/bjr.20201314
- Wang, (2023), Insights Imaging, 14, pp. 127, 10.1186/s13244-023-01473-y
- Ueno, (2017), Radiology, 284, pp. 748, 10.1148/radiol.2017161950
- Stanzione, (2021), Acad. Radiol., 28, pp. 737, 10.1016/j.acra.2020.02.028
- Dybvik, (2018), J. Magn. Reson. Imaging, 48, pp. 1637, 10.1002/jmri.26184
- Fasmer, (2021), J. Magn. Reson. Imaging, 53, pp. 928, 10.1002/jmri.27444
- Zhu, X., Ying, J., Yang, H., Fu, L., Li, B., and Jiang, B. (2021). Detection of Deep Myometrial Invasion in Endometrial Cancer MR Imaging Based on Multi-Feature Fusion and Probabilistic Support Vector Machine Ensemble. Comput. Biol. Med., 134.
- Han, (2020), J. Cancer Res. Ther., 16, pp. 1648, 10.4103/jcrt.JCRT_1393_20
- Lefebvre, (2022), Radiology, 305, pp. 375, 10.1148/radiol.212873
- Li, X., Dessi, M., Marcus, D., Russell, J., Aboagye, E.O., Ellis, L.B., Sheeka, A., Park, W.-H.E., Bharwani, N., and Ghaem-Maghami, S. (2023). Prediction of Deep Myometrial Infiltration, Clinical Risk Category, Histological Type, and Lymphovascular Space Invasion in Women with Endometrial Cancer Based on Clinical and T2-Weighted MRI Radiomic Features. Cancers, 15.
- Otani, (2022), Magn. Reson. Imaging, 85, pp. 161, 10.1016/j.mri.2021.10.024
- Xu, (2019), Front. Oncol., 9, pp. 1007, 10.3389/fonc.2019.01007
- Yan, (2021), Eur. Radiol., 31, pp. 411, 10.1007/s00330-020-07099-8
- Hansen, (2019), J. Gynecol. Oncol., 30, pp. e84, 10.3802/jgo.2019.30.e84
- Dautry, (2020), Diagn. Interv. Imaging, 101, pp. 401, 10.1016/j.diii.2020.01.003
- Celli, V., Guerreri, M., Pernazza, A., Cuccu, I., Palaia, I., Tomao, F., Di Donato, V., Pricolo, P., Ercolani, G., and Ciulla, S. (2022). MRI- and Histologic-Molecular-Based Radio-Genomics Nomogram for Preoperative Assessment of Risk Classes in Endometrial Cancer. Cancers, 14.
- Long, (2021), Diagn. Interv. Imaging, 102, pp. 455, 10.1016/j.diii.2021.02.008
- Zheng, (2023), Future Oncol., 19, pp. 587, 10.2217/fon-2022-0631
- Lefebvre, (2023), Diagn. Interv. Imaging, 104, pp. 142, 10.1016/j.diii.2022.10.007
- Yan, (2020), J. Magn. Reson. Imaging, 52, pp. 1872, 10.1002/jmri.27289
- Chen, (2021), J. Cancer, 12, pp. 726, 10.7150/jca.50872
- Jacob, H., Dybvik, J.A., Ytre-Hauge, S., Fasmer, K.E., Hoivik, E.A., Trovik, J., Krakstad, C., and Haldorsen, I.S. (2021). An MRI-Based Radiomic Prognostic Index Predicts Poor Outcome and Specific Genetic Alterations in Endometrial Cancer. J. Clin. Med., 10.
- Lin, (2023), Eur. Radiol., 33, pp. 5814, 10.1007/s00330-023-09685-y
- Salvesen, (2021), Clin. Radiol., 76, pp. 79.e13, 10.1016/j.crad.2020.07.037
- (2023, September 17). CC. Available online: https://www.who.int/health-topics/cervical-cancer.
- Bhatla, (2019), Int. J. Gynaecol. Obstet., 145, pp. 129, 10.1002/ijgo.12749
- Cibula, (2018), Virchows Arch., 472, pp. 919, 10.1007/s00428-018-2362-9
- Manganaro, (2021), Eur. Radiol., 31, pp. 7802, 10.1007/s00330-020-07632-9
- Liu, (2017), Gynecol. Obstet. Investig., 82, pp. 209, 10.1159/000456006
- Woo, (2018), Eur. Radiol., 28, pp. 530, 10.1007/s00330-017-4958-x
- Vincens, (2008), Cancer, 113, pp. 2158, 10.1002/cncr.23817
- Hodneland, E., Kaliyugarasan, S., Wagner-Larsen, K.S., Lura, N., Andersen, E., Bartsch, H., Smit, N., Halle, M.K., Krakstad, C., and Lundervold, A.S. (2022). Fully Automatic Whole-Volume Tumour Segmentation in CC. Cancers, 14.
- Fiset, (2019), Radiother. Oncol., 135, pp. 107, 10.1016/j.radonc.2019.03.001
- Traverso, (2020), Radiother. Oncol., 143, pp. 88, 10.1016/j.radonc.2019.08.008
- Ramli, Z., Karim, M.K.A., Effendy, N., Abd Rahman, M.A., Kechik, M.M.A., Ibahim, M.J., and Haniff, N.S.M. (2022). Stability and Reproducibility of Radiomic Features Based on Various Segmentation Techniques on CC DWI-MRI. Diagnostics, 12.
- Chen, (2021), Acta Radiol., 62, pp. 679, 10.1177/0284185120934471
- Takada, (2020), Jpn. J. Radiol., 38, pp. 265, 10.1007/s11604-019-00917-0
- Liu, (2019), J. Magn. Reson. Imaging, 49, pp. 280, 10.1002/jmri.26192
- Wang, (2022), Acta Radiol., 63, pp. 847, 10.1177/02841851211014188
- Liu, (2023), Acta Radiol., 64, pp. 395, 10.1177/02841851211065142
- Kan, (2019), J. Magn. Reson. Imaging, 49, pp. 304, 10.1002/jmri.26209
- Yu, (2019), Br. J. Radiol., 92, pp. 20180986, 10.1259/bjr.20180986
- Wang, (2019), Eur. J. Radiol., 114, pp. 128, 10.1016/j.ejrad.2019.01.003
- Wu, (2019), Radiother. Oncol., 138, pp. 141, 10.1016/j.radonc.2019.04.035
- Chen, (2020), Br. J. Radiol., 93, pp. 20190558, 10.1259/bjr.20190558
- Xiao, (2020), J. Magn. Reson. Imaging, 52, pp. 885, 10.1002/jmri.27101
- Yan, (2020), Br. J. Radiol., 93, pp. 20200358, 10.1259/bjr.20200358
- Deng, (2021), Eur. J. Radiol., 134, pp. 109429, 10.1016/j.ejrad.2020.109429
- Liu, (2022), Front. Oncol., 12, pp. 894918, 10.3389/fonc.2022.894918
- Zhang, (2023), Insights Imaging, 14, pp. 65, 10.1186/s13244-023-01405-w
- Dong, (2020), Front. Oncol., 10, pp. 464, 10.3389/fonc.2020.00464
- Hou, (2020), Front. Oncol., 10, pp. 1393, 10.3389/fonc.2020.01393
- Liu, (2021), Transl. Oncol., 14, pp. 101113, 10.1016/j.tranon.2021.101113
- Shi, (2022), Magn. Reson. Imaging, 88, pp. 1, 10.1016/j.mri.2021.12.008
- Li, (2022), Eur. J. Radiol., 151, pp. 110243, 10.1016/j.ejrad.2022.110243
- Ren, (2022), Eur. J. Radiol., 156, pp. 110504, 10.1016/j.ejrad.2022.110504
- Li, (2019), J. Magn. Reson. Imaging, 49, pp. 1420, 10.1002/jmri.26531
- Jiang, (2021), IEEE/ACM Trans. Comput. Biol. Bioinform., 18, pp. 995, 10.1109/TCBB.2019.2963867
- Xiao, (2022), Br. J. Radiol., 95, pp. 20211076, 10.1259/bjr.20211076
- Cui, (2022), Diagn. Interv. Radiol., 28, pp. 312, 10.5152/dir.2022.20657
- Wu, (2023), J. Magn. Reson. Imaging, 58, pp. 1638, 10.1002/jmri.28676
- Wang, (2020), Eur. Radiol., 30, pp. 3585, 10.1007/s00330-019-06655-1
- Song, (2020), Sci. Rep., 10, pp. 19890, 10.1038/s41598-020-76853-1
- Bowen, (2018), J. Magn. Reson. Imaging, 47, pp. 1388, 10.1002/jmri.25874
- Sun, (2019), EBioMedicine, 46, pp. 160, 10.1016/j.ebiom.2019.07.049
- Tian, (2020), Front. Oncol., 10, pp. 77, 10.3389/fonc.2020.00077
- Liu, (2021), Arch. Gynecol. Obstet., 303, pp. 811, 10.1007/s00404-020-05908-5
- Ligero, (2021), Radiology, 299, pp. 109, 10.1148/radiol.2021200928
- Gui, B., Autorino, R., Miccò, M., Nardangeli, A., Pesce, A., Lenkowicz, J., Cusumano, D., Russo, L., Persiani, S., and Boldrini, L. (2021). Pretreatment MRI Radiomics Based Response Prediction Model in Locally Advanced CC. Diagnostics, 11.
- Zhang, (2022), Magn. Reson. Imaging, 91, pp. 37, 10.1016/j.mri.2022.05.005
- Wang, (2022), Contrast Media Mol. Imaging, 2022, pp. 2432291
- Zhang, (2023), Abdom. Radiol., 48, pp. 367, 10.1007/s00261-022-03665-4
- Kawahara, D., Nishibuchi, I., Kawamura, M., Yoshida, T., Koh, I., Tomono, K., Sekine, M., Takahashi, H., Kikuchi, Y., and Kudo, Y. (2022). Radiomic Analysis for Pretreatment Prediction of Recurrence Post-Radiotherapy in Cervical Squamous Cell Carcinoma Cancer. Diagnostics, 12.
- Zhang, Y., Wu, C., Xiao, Z., Lv, F., and Liu, Y. (2023). A Deep Learning Radiomics Nomogram to Predict Response to Neoadjuvant Chemotherapy for Locally Advanced CC: A Two-Centre Study. Diagnostics, 13.
- Jajodia, (2021), Tomography, 7, pp. 344, 10.3390/tomography7030031
- Ikushima, (2022), J. Radiat. Res., 63, pp. 98, 10.1093/jrr/rrab104
- Wang, (2023), Front. Oncol., 13, pp. 1100087, 10.3389/fonc.2023.1100087
- Meng, (2018), Sci. Rep., 8, pp. 11399, 10.1038/s41598-018-29838-0
- Ren, (2023), BJOG, 130, pp. 222, 10.1111/1471-0528.17285
- Qin, X., Wang, C., Gong, G., Wang, L., Su, Y., and Yin, Y. (2022). Functional MRI Radiomics-Based Assessment of Pelvic Bone Marrow Changes after Concurrent Chemoradiotherapy for CC. BMC Cancer, 22.
- Wei, C., Xiang, X., Zhou, X., Ren, S., Zhou, Q., Dong, W., Lin, H., Wang, S., Zhang, Y., and Lin, H. (2022). Development and Validation of an Interpretable Radiomic Nomogram for Severe Radiation Proctitis Prediction in Postoperative CC Patients. Front. Microbiol., 13.
- Yu, (2023), Front. Nutr., 10, pp. 1113588, 10.3389/fnut.2023.1113588
- Lucia, (2018), Eur. J. Nucl. Med. Mol. Imaging, 45, pp. 768, 10.1007/s00259-017-3898-7
- Fang, (2020), Theranostics, 10, pp. 2284, 10.7150/thno.37429
- Lucia, (2019), Eur. J. Nucl. Med. Mol. Imaging, 46, pp. 864, 10.1007/s00259-018-4231-9
- Park, (2020), Radiat. Oncol., 15, pp. 86, 10.1186/s13014-020-01502-w
- Li, (2021), Front. Oncol., 11, pp. 706043, 10.3389/fonc.2021.706043
- Zhou, (2022), Eur. Radiol., 32, pp. 2540, 10.1007/s00330-021-08326-6
- Zheng, (2022), Br. J. Radiol., 95, pp. 20210838, 10.1259/bjr.20210838
- Cai, (2021), Front. Oncol., 11, pp. 749114, 10.3389/fonc.2021.749114
- Liu, (2021), Front. Oncol., 11, pp. 812993, 10.3389/fonc.2021.812993
- Autorino, (2022), Radiol. Med., 127, pp. 498, 10.1007/s11547-022-01482-9
- Jiang, (2022), Br. J. Radiol., 95, pp. 20211229, 10.1259/bjr.20211229
- Wei, (2022), Magn. Reson. Imaging, 91, pp. 81, 10.1016/j.mri.2022.05.019
- Zhang, (2023), Acad. Radiol., 30, pp. 499, 10.1016/j.acra.2022.08.002
- Jha, (2023), Artif. Intell. Med., 139, pp. 102549, 10.1016/j.artmed.2023.102549
- Capozzi, (2020), J. Obstet. Gynaecol. Res., 46, pp. 2221, 10.1111/jog.14436
- Baird, (2003), Am. J. Obstet. Gynecol., 188, pp. 100, 10.1067/mob.2003.99
- Prat, (2010), Gynecol. Oncol., 116, pp. 131, 10.1016/j.ygyno.2009.09.023
- Wang, (2022), Front. Oncol., 12, pp. 1005191, 10.3389/fonc.2022.1005191
- Woo, (2021), Curr. Opin. Oncol., 33, pp. 464, 10.1097/CCO.0000000000000758
- Malek, (2019), Eur. J. Radiol., 110, pp. 203, 10.1016/j.ejrad.2018.11.009
- Malek, (2020), Sci. Rep., 10, pp. 7404, 10.1038/s41598-020-64285-w
- Xie, (2019), Eur. J. Radiol., 115, pp. 39, 10.1016/j.ejrad.2019.04.004
- Nakagawa, (2019), Clin. Radiol., 74, pp. 167.e1, 10.1016/j.crad.2018.10.010
- Xie, (2019), Mol. Imaging Biol., 21, pp. 1157, 10.1007/s11307-019-01332-7
- Yang, X., and Stamp, M. (2021). Computer-Aided Diagnosis of Low Grade Endometrial Stromal Sarcoma (LGESS). Comput. Biol. Med., 138.
- Nougaret, (2019), Diagn. Interv. Imaging, 100, pp. 647, 10.1016/j.diii.2018.11.007
- Vernuccio, (2020), Recent. Progress. Med., 111, pp. 130
- Qi, (2021), Front. Genet., 12, pp. 753948, 10.3389/fgene.2021.753948
- Yao, (2022), Br. J. Radiol., 95, pp. 20211332, 10.1259/bjr.20211332
- Yao, (2021), Abdom. Radiol., 46, pp. 4936, 10.1007/s00261-021-03163-z
- Pan, (2020), Front. Oncol., 10, pp. 895, 10.3389/fonc.2020.00895
- Li, (2021), Sci. Rep., 11, pp. 8730, 10.1038/s41598-021-87775-x
- Li, (2022), Front. Oncol., 12, pp. 934735, 10.3389/fonc.2022.934735
- Wang, (2022), JAMA Netw. Open, 5, pp. e2245141, 10.1001/jamanetworkopen.2022.45141
- Rizzo, S., Manganaro, L., Dolciami, M., Gasparri, M.L., Papadia, A., and Del Grande, F. (2021). Computed Tomography Based Radiomics as a Predictor of Survival in Ovarian Cancer Patients: A Systematic Review. Cancers, 13.
- Hu, (2022), iScience, 25, pp. 104628, 10.1016/j.isci.2022.104628
- Wei, (2019), Front. Oncol., 9, pp. 255, 10.3389/fonc.2019.00255
- Fotopoulou, (2022), Br. J. Cancer, 126, pp. 1047, 10.1038/s41416-021-01662-w
- Rundo, (2022), Front. Oncol., 12, pp. 868265, 10.3389/fonc.2022.868265
- Wei, (2022), Insights Imaging, 13, pp. 130, 10.1186/s13244-022-01264-x
- Jian, (2021), Eur. Radiol., 31, pp. 403, 10.1007/s00330-020-07091-2
- Li, (2021), AJR Am. J. Roentgenol., 217, pp. 664, 10.2214/AJR.20.23195
- Wang, (2022), J. Ovarian Res., 15, pp. 6, 10.1186/s13048-021-00941-7
- Song, (2021), Eur. Radiol., 31, pp. 8438, 10.1007/s00330-021-08004-7
- Lu, (2023), Acad. Radiol., 30, pp. 1823, 10.1016/j.acra.2022.12.019
- Li, (2023), Eur. Radiol., 33, pp. 5298, 10.1007/s00330-023-09552-w
- Veeraraghavan, H., Vargas, H., Jimenez-Sanchez, A., Micco, M., Mema, E., Lakhman, Y., Crispin-Ortuzar, M., Huang, E., Levine, D., and Grisham, R. (2020). Integrated Multi-Tumour Radio-Genomic Marker of Outcomes in Patients with High Serous Ovarian Carcinoma. Cancers, 12.
- Beer, (2020), Eur. Radiol., 30, pp. 4306, 10.1007/s00330-020-06755-3
- Gao, (2022), Int. Immunopharmacol., 113, pp. 109335, 10.1016/j.intimp.2022.109335
- Avesani, G., Tran, H.E., Cammarata, G., Botta, F., Raimondi, S., Russo, L., Persiani, S., Bonatti, M., Tagliaferri, T., and Dolciami, M. (2022). CT-Based Radiomics and Deep Learning for BRCA Mutation and Progression-Free Survival Prediction in Ovarian Cancer Using a Multicentric Dataset. Cancers, 14.
- Nougaret, (2021), Abdom. Radiol., 46, pp. 2308, 10.1007/s00261-020-02820-z
- Ponsiglione, (2023), Eur. Radiol., 33, pp. 2239, 10.1007/s00330-022-09180-w
- Spadarella, (2022), Eur. Radiol., 33, pp. 1884, 10.1007/s00330-022-09187-3
- Cannella, (2023), Insights Imaging, 14, pp. 21, 10.1186/s13244-023-01365-1