Cristian Robert
Munteanu
Ikerbasque, Fundación Vasca para la Ciencia
Bilbao, EspañaPublications in collaboration with researchers from Ikerbasque, Fundación Vasca para la Ciencia (33)
2024
-
MATEO: intermolecular α-amidoalkylation theoretical enantioselectivity optimization. Online tool for selection and design of chiral catalysts and products
Journal of Cheminformatics, Vol. 16, Núm. 1
-
Unraveling druggable cancer-driving proteins and targeted drugs using artificial intelligence and multi-omics analyses
Scientific Reports, Vol. 14, Núm. 1
2021
-
Prediction of anti-glioblastoma drug-decorated nanoparticle delivery systems using molecular descriptors and machine learning
International Journal of Molecular Sciences, Vol. 22, Núm. 21
2020
-
A multi-objective approach for anti-osteosarcoma cancer agents discovery through drug repurposing
Pharmaceuticals, Vol. 13, Núm. 11, pp. 1-16
-
Gene prioritization through consensus strategy, enrichment methodologies analysis, and networking for osteosarcoma pathogenesis
International Journal of Molecular Sciences, Vol. 21, Núm. 3
-
MCDcalc: Markov chain molecular descriptors calculator for medicinal chemistry
Current Topics in Medicinal Chemistry, Vol. 20, Núm. 4, pp. 305-317
-
Net-net autoML selection of artificial neural network topology for brain connectome prediction
Applied Sciences (Switzerland), Vol. 10, Núm. 4
-
OncoOmics approaches to reveal essential genes in breast cancer: a panoramic view from pathogenesis to precision medicine
Scientific Reports, Vol. 10, Núm. 1
-
Perturbation-theory machine learning (PTML) multilabel model of the CheMBL dataset of preclinical assays for antisarcoma compounds
ACS Omega, Vol. 5, Núm. 42, pp. 27211-27220
-
Prediction of antimalarial drug-decorated nanoparticle delivery systems with random forest models
Biology, Vol. 9, Núm. 8, pp. 1-15
-
Prediction of breast cancer proteins involved in immunotherapy, metastasis, and RNA-binding using molecular descriptors and artificial neural networks
Scientific Reports, Vol. 10, Núm. 1
-
Ptml multi-label algorithms: Models, software, and applications
Current Topics in Medicinal Chemistry, Vol. 20, Núm. 25, pp. 2326-2337
2019
-
PTML Model of Enzyme Subclasses for Mining the Proteome of Biofuel Producing Microorganisms
Journal of Proteome Research, Vol. 18, Núm. 7, pp. 2735-2746
-
Perturbation Theory Machine Learning Modeling of Immunotoxicity for Drugs Targeting Inflammatory Cytokines and Study of the Antimicrobial G1 Using Cytometric Bead Arrays
Chemical Research in Toxicology, Vol. 32, Núm. 9, pp. 1811-1823
2018
-
Gene prioritization, communality analysis, networking and metabolic integrated pathway to better understand breast cancer pathogenesis
Scientific Reports, Vol. 8, Núm. 1
-
Net-Net Auto Machine Learning (AutoML) Prediction of Complex Ecosystems
Scientific Reports, Vol. 8, Núm. 1
-
Perturbation Theory/Machine Learning Model of ChEMBL Data for Dopamine Targets: Docking, Synthesis, and Assay of New l -Prolyl- l -leucyl-glycinamide Peptidomimetics
ACS Chemical Neuroscience, Vol. 9, Núm. 11, pp. 2572-2587
2017
-
Carbon nanotubes’ effect on mitochondrial oxygen flux dynamics: Polarography experimental study and machine learning models using star graph trace invariants of raman spectra
Nanomaterials, Vol. 7, Núm. 11
-
Decrypting Strong and Weak Single-Walled Carbon Nanotubes Interactions with Mitochondrial Voltage-Dependent Anion Channels Using Molecular Docking and Perturbation Theory
Scientific Reports, Vol. 7, Núm. 1
-
Experimental study and ANN dual-time scale perturbation model of electrokinetic properties of microbiota
Frontiers in Microbiology, Vol. 8, Núm. JUN